on the problems in "6 Hyperbolic functions/6.6 Hyperbolic cosecant"
Test results for the 11 problems in "6.6.1 (c+d x) ^m (a+b csch)^n.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3} \operatorname{csch}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 142 leaves, 9 steps):

```
\(-\frac{2(d x+c)^{3} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{3 d(d x+c)^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{3 d(d x+c)^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{6 d^{2}(d x+c) \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}\)
\[
-\frac{6 d^{2}(d x+c) \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{6 d^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{6 d^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{b x+a}\right)}{b^{4}}
\]
```

Result(type 4, 540 leaves):

$$
\begin{aligned}
& -\frac{d^{3} a^{3} \ln \left(1+\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{d^{3} a^{3} \ln \left(1-\mathrm{e}^{b x+a}\right)}{b^{4}}-\frac{d^{3} \ln \left(1+\mathrm{e}^{b x+a}\right) x^{3}}{b}-\frac{3 d^{3} \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right) x^{2}}{b^{2}}+\frac{6 d^{3} \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right) x}{b^{3}}+\frac{d^{3} \ln \left(1-\mathrm{e}^{b x+a}\right) x^{3}}{b} \\
& +\frac{3 d^{3} \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right) x^{2}}{b^{2}}-\frac{6 d^{3} \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right) x}{b^{3}}-\frac{3 c^{2} d \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{3 c^{2} d \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{6 c d^{2} \mathrm{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}} \\
& -\frac{6 c d^{2} \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{2 d^{3} a^{3} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{4}}-\frac{2 c^{3} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}+\frac{3 c d^{2} a^{2} \ln \left(1+\mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{3 c d^{2} a^{2} \ln \left(1-\mathrm{e}^{b x+a}\right)}{b^{3}} \\
& -\frac{3 c^{2} d \ln \left(1+\mathrm{e}^{b x+a}\right) x}{b}-\frac{3 c^{2} d \ln \left(1+\mathrm{e}^{b x+a}\right) a}{b^{2}}+\frac{3 c^{2} d \ln \left(1-\mathrm{e}^{b x+a}\right) x}{b}+\frac{3 c^{2} d \ln \left(1-\mathrm{e}^{b x+a}\right) a}{b^{2}}-\frac{3 c d^{2} \ln \left(1+\mathrm{e}^{b x+a}\right) x^{2}}{b} \\
& -\frac{6 c d^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right) x}{b^{2}}+\frac{3 c d^{2} \ln \left(1-\mathrm{e}^{b x+a}\right) x^{2}}{b}+\frac{6 c d^{2} \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right) x}{b^{2}}-\frac{6 d^{2} a^{2} c \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{6 d a c^{2} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{2}} \\
& -\frac{6 d^{3} \operatorname{poly} \log \left(4,-\mathrm{e}^{b x+a}\right)}{b^{4}}+\frac{6 d^{3} \operatorname{poly} \log \left(4, \mathrm{e}^{b x+a}\right)}{b^{4}}
\end{aligned}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \operatorname{csch}(b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 147 leaves, 9 steps):
$\frac{(d x+c)^{2} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}-\frac{d^{2} \operatorname{arctanh}(\cosh (b x+a))}{b^{3}}-\frac{d(d x+c) \operatorname{csch}(b x+a)}{b^{2}}-\frac{(d x+c)^{2} \operatorname{coth}(b x+a) \operatorname{csch}(b x+a)}{2 b}$
$+\frac{d(d x+c) \operatorname{poly} \log \left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{d(d x+c) \operatorname{poly} \log \left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{d^{2} \operatorname{poly} \log \left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{d^{2} \operatorname{poly} \log \left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}$
Result(type 4, 443 leaves):

$$
\begin{aligned}
& -\frac{\mathrm{e}^{b x+a}\left(b d^{2} x^{2} \mathrm{e}^{2 b x+2 a}+2 b c d x \mathrm{e}^{2 b x+2 a}+b c^{2} \mathrm{e}^{2 b x+2 a}+b d^{2} x^{2}+2 d^{2} x \mathrm{e}^{2 b x+2 a}+2 b c d x+2 c d \mathrm{e}^{2 b x+2 a}+b c^{2}-2 d^{2} x-2 c d\right)}{b^{2}\left(\mathrm{e}^{2 b x+2 a}-1\right)^{2}} \\
& \quad-\frac{2 a c d \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{2}}+\frac{\ln \left(1+\mathrm{e}^{b x+a}\right) c d x}{b}+\frac{\ln \left(1+\mathrm{e}^{b x+a}\right) a c d}{b^{2}}-\frac{\ln \left(1-\mathrm{e}^{b x+a}\right) c d x}{b}-\frac{\ln \left(1-\mathrm{e}^{b x+a}\right) a c d}{b^{2}}-\frac{d^{2} \operatorname{polylog}\left(3,-\mathrm{e}^{b x+a}\right)}{b^{3}} \\
& +\frac{d^{2} \operatorname{polylog}\left(3, \mathrm{e}^{b x+a}\right)}{b^{3}}-\frac{2 d^{2} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{c d \operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{c d \operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right)}{b^{2}}-\frac{\ln \left(1+\mathrm{e}^{b x+a}\right) a^{2} d^{2}}{2 b^{3}}+\frac{\ln \left(1-\mathrm{e}^{b x+a}\right) a^{2} d^{2}}{2 b^{3}} \\
& \quad+\frac{a^{2} d^{2} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b^{3}}+\frac{c^{2} \operatorname{arctanh}\left(\mathrm{e}^{b x+a}\right)}{b}+\frac{\ln \left(1+\mathrm{e}^{b x+a}\right) d^{2} x^{2}}{2 b}+\frac{\operatorname{polylog}\left(2,-\mathrm{e}^{b x+a}\right) d^{2} x}{b^{2}}-\frac{\ln \left(1-\mathrm{e}^{b x+a}\right) d^{2} x^{2}}{2 b}-\frac{\operatorname{polylog}\left(2, \mathrm{e}^{b x+a}\right) d^{2} x}{b^{2}}
\end{aligned}
$$

Problem 5: Unable to integrate problem.

$$
\int\left(\frac{x}{\operatorname{csch}(x)^{7 / 2}}-\frac{5 x \sqrt{\operatorname{csch}(x)}}{21}\right) \mathrm{d} x
$$

Optimal(type 3, 31 leaves, 5 steps):

$$
-\frac{4}{49 \operatorname{csch}(x)^{7 / 2}}+\frac{2 x \cosh (x)}{7 \operatorname{csch}(x)^{5 / 2}}+\frac{20}{63 \operatorname{csch}(x)^{3 / 2}}-\frac{10 x \cosh (x)}{21 \sqrt{\operatorname{csch}(x)}}
$$

Result(type 8, 16 leaves):

$$
\int\left(\frac{x}{\operatorname{csch}(x)^{7 / 2}}-\frac{5 x \sqrt{\operatorname{csch}(x)}}{21}\right) \mathrm{d} x
$$

Problem 6: Unable to integrate problem.

$$
\int\left(\frac{x^{2}}{\operatorname{csch}(x)^{3 / 2}}+\frac{x^{2} \sqrt{\operatorname{csch}(x)}}{3}\right) \mathrm{d} x
$$

Optimal(type 4, 78 leaves, 7 steps):

$$
-\frac{8 x}{9 \operatorname{csch}(x)^{3 / 2}}+\frac{16 \cosh (x)}{27 \sqrt{\operatorname{csch}(x)}}+\frac{2 x^{2} \cosh (x)}{3 \sqrt{\operatorname{csch}(x)}}-\frac{16 \mathrm{I} \sqrt{\sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right), \sqrt{2}\right) \sqrt{\operatorname{csch}(x)} \sqrt{\mathrm{I} \sinh (x)}}{27 \sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)}
$$

Result(type 8, 20 leaves):

$$
\int\left(\frac{x^{2}}{\operatorname{csch}(x)^{3 / 2}}+\frac{x^{2} \sqrt{\operatorname{csch}(x)}}{3}\right) d x
$$

Problem 7: Unable to integrate problem.

$$
\int \frac{(f x+e)^{3} \cosh (d x+c)}{a+b \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 422 leaves, 17 steps):

$$
\begin{aligned}
& \frac{b(f x+e)^{4}}{4 a^{2} f}-\frac{6 f^{3} \cosh (d x+c)}{a d^{4}}-\frac{3 f(f x+e)^{2} \cosh (d x+c)}{a d^{2}}-\frac{b(f x+e)^{3} \ln \left(1+\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d}-\frac{b(f x+e)^{3} \ln \left(1+\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d} \\
& -\frac{3 b f(f x+e)^{2} \text { polylog }\left(2,-\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2}}-\frac{3 b f(f x+e)^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2}}+\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3}} \\
& +\frac{6 b f^{2}(f x+e) \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3}}-\frac{6 b f^{3} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{4}}-\frac{6 b f^{3} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{4}} \\
& +\frac{6 f^{2}(f x+e) \sinh (d x+c)}{a d^{3}}+\frac{(f x+e)^{3} \sinh (d x+c)}{a d}
\end{aligned}
$$

Result(type 8, 368 leaves):

$$
\begin{aligned}
&-\frac{b\left(\frac{1}{4} f^{3} x^{4}+e f^{2} x^{3}+\frac{3}{2} e^{2} f x^{2}+e^{3} x\right)}{a^{2}}+\frac{\left(f^{3} x^{3} d^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x-3 d^{2} f^{3} x^{2}+d^{3} e^{3}-6 d^{2} e f^{2} x-3 e^{2} f d^{2}+6 d f^{3} x+6 e f^{2} d-6 f^{3}\right) \mathrm{e}^{d x+c}}{2 a d^{4}} \\
&-\frac{f^{3} x^{3} d^{3}+3 d^{3} e f^{2} x^{2}+3 d^{3} e^{2} f x+3 d^{2} f^{3} x^{2}+d^{3} e^{3}+6 d^{2} e f^{2} x+3 e^{2} f d^{2}+6 d f^{3} x+6 e f^{2} d+6 f^{3}}{2 a d^{4} \mathrm{e}^{d x+c}}+\int \\
&-\frac{2 b\left(-b f^{3} x^{3} \mathrm{e}^{d x+c}+a f^{3} x^{3}-3 b e f^{2} x^{2} \mathrm{e}^{d x+c}+3 a e f^{2} x^{2}-3 b e^{2} f x \mathrm{e}^{d x+c}+3 a e^{2} f x-b e^{3} \mathrm{e}^{d x+c}+a e^{3}\right)}{\left(a\left(\mathrm{e}^{d x+c}\right)^{2}+2 b \mathrm{e}^{d x+c}-a\right) a^{2}} \mathrm{~d} x
\end{aligned}
$$

Problem 8: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \cosh (d x+c)}{a+b \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 310 leaves, 14 steps):

$$
\begin{aligned}
& \frac{b(f x+e)^{3}}{3 a^{2} f}-\frac{2 f(f x+e) \cosh (d x+c)}{a d^{2}}-\frac{b(f x+e)^{2} \ln \left(1+\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d}-\frac{b(f x+e)^{2} \ln \left(1+\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d} \\
& -\frac{2 b f(f x+e) \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{-\frac{2 b f(f x+e) \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2}}+\frac{2 b f^{2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2}}}+ \\
& \quad+\frac{2 b f^{2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3}}+\frac{2 f^{2} \sinh (d x+c)}{a d^{3}}+\frac{(f x+e)^{2} \sinh (d x+c)}{a d}
\end{aligned}
$$

Result(type 8, 235 leaves):

$$
\begin{aligned}
& -\frac{b\left(\frac{1}{3} f^{2} x^{3}+f e x^{2}+e^{2} x\right)}{a^{2}}+\frac{\left(f^{2} x^{2} d^{2}+2 d^{2} e f x+d^{2} e^{2}-2 d f^{2} x-2 e f d+2 f^{2}\right) \mathrm{e}^{d x+c}}{2 a d^{3}}-\frac{f^{2} x^{2} d^{2}+2 d^{2} e f x+d^{2} e^{2}+2 d f^{2} x+2 e f d+2 f^{2}}{2 a d^{3} \mathrm{e}^{d x+c}}+\int \\
& -\frac{2 b\left(-b f^{2} x^{2} \mathrm{e}^{d x+c}+a f^{2} x^{2}-2 b e f x \mathrm{e}^{d x+c}+2 a e f x-b e^{2} \mathrm{e}^{d x+c}+a e^{2}\right)}{\left(a\left(\mathrm{e}^{d x+c}\right)^{2}+2 b \mathrm{e}^{d x+c}-a\right) a^{2}} \mathrm{~d} x
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{(f x+e) \cosh (d x+c)}{a+b \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 198 leaves, 11 steps):

$$
-\frac{b f \text { polylog }\left(2,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2}}+\frac{(f x+e) \sinh (d x+c)}{a d}
$$

Result(type 4, 482 leaves):

$$
\begin{aligned}
\frac{b f x^{2}}{2 a^{2}} & -\frac{b e x}{a^{2}}+\frac{(f x d+e d-f) \mathrm{e}^{d x+c}}{2 d^{2} a}-\frac{(f x d+e d+f) \mathrm{e}^{-d x-c}}{2 d^{2} a}-\frac{b e \ln \left(a \mathrm{e}^{2 d x+2 c}+2 b \mathrm{e}^{d x+c}-a\right)}{a^{2} d}+\frac{2 b e \ln \left(\mathrm{e}^{d x+c}\right)}{a^{2} d} \\
& \left.-\frac{b f \ln \left(\frac{-a \mathrm{e}^{d x+c}+\sqrt{a^{2}+b^{2}}-b}{-b+\sqrt{a^{2}+b^{2}}}\right) x \quad b f \ln \left(\frac{-a \mathrm{e}^{d x+c}+\sqrt{a^{2}+b^{2}}-b}{a^{2} d}\right) c \quad b f \ln \left(\frac{a \mathrm{e}^{d x+c}+\sqrt{a^{2}+b^{2}}+b}{-b+\sqrt{a^{2}+b^{2}}}\right) x}{a^{2} d^{2}}-\frac{\sqrt{a^{2}+b^{2}}}{a^{2} d}\right) \\
& \left.-\frac{b f \ln \left(\frac{a \mathrm{e}^{d x+c}+\sqrt{a^{2}+b^{2}}+b}{b+\sqrt{a^{2}+b^{2}}}\right) c \quad b f \operatorname{dilog}\left(\frac{a \mathrm{e}^{d x+c}+\sqrt{a^{2}+b^{2}}+b}{a^{2} d^{2}}\right)}{b+\sqrt{a^{2}+b^{2}}}-\frac{b f \operatorname{dilog}\left(\frac{-a \mathrm{e}^{d x+c}+\sqrt{a^{2}+b^{2}}-b}{a^{2} d^{2}}\right.}{a^{2}}-\frac{-b+\sqrt{a^{2}+b^{2}}}{a^{2} d^{2}}\right) \\
& +\frac{b f c \ln \left(a \mathrm{e}^{2 d x+2 c}+2 b \mathrm{e}^{d x+c}-a\right)}{a^{2} d^{2}}-\frac{2 b f c \ln \left(\mathrm{e}^{d x+c}\right)}{a^{2} d^{2}}
\end{aligned}
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{(f x+e)^{2} \cosh (d x+c)^{2}}{a+b \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 468 leaves, 21 steps):

$$
\begin{aligned}
& \frac{f^{2} x}{4 a d^{2}}+\frac{(f x+e)^{3}}{6 a f}+\frac{b^{2}(f x+e)^{3}}{3 a^{3} f}-\frac{2 b f^{2} \cosh (d x+c)}{a^{2} d^{3}}-\frac{b(f x+e)^{2} \cosh (d x+c)}{a^{2} d}-\frac{f(f x+e) \cosh (d x+c)^{2}}{2 a d^{2}}+\frac{2 b f(f x+e) \sinh (d x+c)}{a^{2} d^{2}} \\
& + \\
& +\frac{f^{2} \cosh (d x+c) \sinh (d x+c)}{4 a d^{3}}+\frac{(f x+e)^{2} \cosh (d x+c) \sinh (d x+c)}{2 a d}-\frac{b(f x+e)^{2} \ln \left(1+\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a^{3} d} \\
& \\
& +\frac{2 b f(f x+e)^{2} \ln \left(1+\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a^{3} d}-\frac{2 b f(f x+e) \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x+c}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a^{3} d^{2}} \\
& \\
& \\
& \quad-\frac{2 b f^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a^{3}\left(3,-\frac{a \mathrm{e}^{d x+c}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 391 leaves):

$$
\begin{aligned}
& \frac{\frac{1}{3} a^{2} f^{2} x^{3}+\frac{2}{3} b^{2} f^{2} x^{3}+a^{2} e f x^{2}+2 b^{2} e f x^{2}+a^{2} e^{2} x+2 b^{2} e^{2} x}{2 a^{3}}+\frac{\left(2 f^{2} x^{2} d^{2}+4 d^{2} e f x+2 d^{2} e^{2}-2 d f^{2} x-2 e f d+f^{2}\right)\left(\mathrm{e}^{d x+c}\right)^{2}}{16 d^{3} a} \\
& -\frac{b\left(f^{2} x^{2} d^{2}+2 d^{2} e f x+d^{2} e^{2}-2 d f^{2} x-2 e f d+2 f^{2}\right) \mathrm{e}^{d x+c}}{2 a^{2} d^{3}}-\frac{b\left(f^{2} x^{2} d^{2}+2 d^{2} e f x+d^{2} e^{2}+2 d f^{2} x+2 e f d+2 f^{2}\right)}{2 a^{2} d^{3} \mathrm{e}^{d x+c}} \\
& -\frac{2 f^{2} x^{2} d^{2}+4 d^{2} e f x+2 d^{2} e^{2}+2 d f^{2} x+2 e f d+f^{2}}{16 d^{3} a\left(\mathrm{e}^{d x+c}\right)^{2}}+\int-\frac{2 b\left(a^{2} f^{2} x^{2}+b^{2} f^{2} x^{2}+2 a^{2} e f x+2 b^{2} e f x+a^{2} e^{2}+b^{2} e^{2}\right) \mathrm{e}^{d x+c}}{\left(a\left(\mathrm{e}^{d x+c}\right)^{2}+2 b \mathrm{e}^{d x+c}-a\right) a^{3}} \mathrm{~d} x
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)^{3}}{a+b \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Optimal(type 3, 81 leaves, 5 steps):

$$
-\frac{b\left(a^{2}+b^{2}\right) \ln (b+a \sinh (d x+c))}{a^{4} d}+\frac{\left(a^{2}+b^{2}\right) \sinh (d x+c)}{a^{3} d}-\frac{b \sinh (d x+c)^{2}}{2 a^{2} d}+\frac{\sinh (d x+c)^{3}}{3 a d}
$$

Result(type 3, 427 leaves):
$-\frac{1}{3 d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{3}}-\frac{b}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{1}{2 d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)^{2}}-\frac{1}{d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}$

$$
\begin{aligned}
& -\frac{b}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}-\frac{b^{2}}{d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}+\frac{b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{2}}+\frac{b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-1\right)}{d a^{4}} \\
& -\frac{b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b-2 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-b\right)}{d a^{2}}-\frac{b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)^{2} b-2 a \tanh \left(\frac{d x}{2}+\frac{c}{2}\right)-b\right)}{d a^{4}}-\frac{1}{3 d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{3}} \\
& +\frac{1}{2 d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}-\frac{b}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)^{2}}-\frac{1}{d a\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{b}{2 d a^{2}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)} \\
& -\frac{b^{2}}{d a^{3}\left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}+\frac{b \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{2}}+\frac{b^{3} \ln \left(\tanh \left(\frac{d x}{2}+\frac{c}{2}\right)+1\right)}{d a^{4}}
\end{aligned}
$$

Test results for the 25 problems in "6.6.2 (ex) ${ }^{\wedge} m(a+b \operatorname{csch}(c+d x \wedge n))^{\wedge} p . t x t "$
Problem 1: Unable to integrate problem.

$$
\int x^{5}\left(a+b \operatorname{csch}\left(d x^{2}+c\right)\right) \mathrm{d} x
$$

Optimal(type 4, 97 leaves, 10 steps):

$$
\frac{a x^{6}}{6}-\frac{b x^{4} \operatorname{arctanh}\left(\mathrm{e}^{d x^{2}+c}\right)}{d}-\frac{b x^{2} \operatorname{poly} \log \left(2,-\mathrm{e}^{d x^{2}+c}\right)}{d^{2}}+\frac{b x^{2} \operatorname{polylog}\left(2, \mathrm{e}^{d x^{2}+c}\right)}{d^{2}}+\frac{b \operatorname{polylog}\left(3,-\mathrm{e}^{d x^{2}+c}\right)}{d^{3}}-\frac{b \operatorname{polylog}\left(3, \mathrm{e}^{d x^{2}+c}\right)}{d^{3}}
$$

Result(type 8, 37 leaves):

$$
\frac{a x^{6}}{6}+\int \frac{2 \mathrm{e}^{d x^{2}+c} b x^{5}}{\left(\mathrm{e}^{d x^{2}+c}\right)^{2}-1} \mathrm{~d} x
$$

Problem 2: Unable to integrate problem.

$$
\int x^{3}\left(a+b \operatorname{csch}\left(d x^{2}+c\right)\right) \mathrm{d} x
$$

Optimal(type 4, 59 leaves, 8 steps):

$$
\frac{a x^{4}}{4}-\frac{b x^{2} \operatorname{arctanh}\left(\mathrm{e}^{d x^{2}+c}\right)}{d}-\frac{b \operatorname{polylog}\left(2,-\mathrm{e}^{d x^{2}+c}\right)}{2 d^{2}}+\frac{b \operatorname{polylog}\left(2, \mathrm{e}^{d x^{2}+c}\right)}{2 d^{2}}
$$

Result(type 8, 37 leaves):

$$
\frac{a x^{4}}{4}+\int \frac{2 \mathrm{e}^{d x^{2}+c} b x^{3}}{\left(\mathrm{e}^{d x^{2}+c}\right)^{2}-1} \mathrm{~d} x
$$

Problem 4: Unable to integrate problem.

$$
\int x^{3}\left(a+b \operatorname{csch}\left(d x^{2}+c\right)\right)^{2} d x
$$

Optimal(type 4, 99 leaves, 10 steps):

$$
\frac{a^{2} x^{4}}{4}-\frac{2 a b x^{2} \operatorname{arctanh}\left(\mathrm{e}^{d x^{2}+c}\right)}{d}-\frac{b^{2} x^{2} \operatorname{coth}\left(d x^{2}+c\right)}{2 d}+\frac{b^{2} \ln \left(\sinh \left(d x^{2}+c\right)\right)}{2 d^{2}}-\frac{a b \operatorname{polylog}\left(2,-\mathrm{e}^{d x^{2}+c}\right)}{d^{2}}+\frac{a b \operatorname{polylog}\left(2, \mathrm{e}^{d x^{2}+c}\right)}{d^{2}}
$$

Result(type 8, 74 leaves):

$$
\frac{a^{2} x^{4}}{4}-\frac{b^{2} x^{2}}{d\left(\left(\mathrm{e}^{d x^{2}+c}\right)^{2}-1\right)}+\int \frac{2 b x\left(2 a d x^{2} \mathrm{e}^{d x^{2}+c}+b\right)}{d\left(\left(\mathrm{e}^{d x^{2}+c}\right)^{2}-1\right)} \mathrm{d} x
$$

Problem 6: Unable to integrate problem.

$$
\int \frac{x^{5}}{a+b \operatorname{csch}\left(d x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 4, 289 leaves, 13 steps):
$\frac{x^{6}}{6 a}-\frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{2 a d \sqrt{a^{2}+b^{2}}}+\frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{2 a d \sqrt{a^{2}+b^{2}}}-\frac{b x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}+\frac{b x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}$

$$
+\frac{b \text { polylog }\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}}-\frac{b \text { polylog }\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}}
$$

Result(type 8, 57 leaves):

$$
\frac{x^{6}}{6 a}+\int-\frac{2 \mathrm{e}^{d x^{2}+c} b x^{5}}{a\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}-a\right)} \mathrm{d} x
$$

Problem 8: Unable to integrate problem.

$$
\int \frac{x^{3}}{a+b \operatorname{csch}\left(d x^{2}+c\right)} \mathrm{d} x
$$

Optimal(type 4, 195 leaves, 11 steps):

$$
\frac{x^{4}}{4 a}-\frac{b x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{2 a d \sqrt{a^{2}+b^{2}}}+\frac{b x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{2 a d \sqrt{a^{2}+b^{2}}}-\frac{b \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{2 a d^{2} \sqrt{a^{2}+b^{2}}}+\frac{b \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{2 a d^{2} \sqrt{a^{2}+b^{2}}}
$$

Result(type 8, 57 leaves):

$$
\frac{x^{4}}{4 a}+\int-\frac{2 \mathrm{e}^{d x^{2}+c} b x^{3}}{a\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}-a\right)} \mathrm{d} x
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{x^{5}}{\left(a+b \operatorname{csch}\left(d x^{2}+c\right)\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 840 leaves, 31 steps):

$$
\begin{aligned}
& -\frac{b^{2} x^{4}}{2 a^{2}\left(a^{2}+b^{2}\right) d}+\frac{x^{6}}{6 a^{2}}+\frac{b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}+\frac{b^{3} x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{2 a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d}+\frac{b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}} \\
& -\frac{b^{3} x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{2 a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d}+\frac{b^{2} \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}}+\frac{b^{3} x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{b^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}} \\
& -\frac{b^{3} x^{2} \text { polylog }\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{b^{3} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}+\frac{b^{3} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& -\frac{b^{2} x^{4} \cosh \left(d x^{2}+c\right)}{2 a\left(a^{2}+b^{2}\right) d\left(b+a \sinh \left(d x^{2}+c\right)\right)}-\frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{a^{2}+b^{2}}}+\frac{b x^{4} \ln \left(1+\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{a^{2}+b^{2}}}-\frac{2 b x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{a^{2}+b^{2}}} \\
& +\frac{2 b x^{2} \text { polylog }\left(2,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{2 b \text { polylog }\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{a^{2}+b^{2}}}-\frac{2 b \text { polylog }\left(3,-\frac{a \mathrm{e}^{d x^{2}+c}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 177 leaves):

$$
\frac{x^{6}}{6 a^{2}}-\frac{b^{2} x^{4}\left(-b \mathrm{e}^{d x^{2}+c}+a\right)}{a^{2}\left(a^{2}+b^{2}\right) d\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}-a\right)}+\int-\frac{2 b x^{3}\left(2 a^{2} d x^{2} \mathrm{e}^{d x^{2}+c}+b^{2} d x^{2} \mathrm{e}^{d x^{2}+c}+2 b^{2} \mathrm{e}^{d x^{2}+c}-2 a b\right)}{a^{2}\left(a^{2}+b^{2}\right) d\left(a\left(\mathrm{e}^{d x^{2}+c}\right)^{2}+2 b \mathrm{e}^{d x^{2}+c}-a\right)} \mathrm{d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{x^{3}}{a+b \operatorname{csch}(c+d \sqrt{x})} \mathrm{d} x
$$

Optimal(type 4, 767 leaves, 23 steps):

$$
\frac{x^{4}}{4 a}-\frac{2 b x^{7 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d \sqrt{a^{2}+b^{2}}}+\frac{2 b x^{7 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d \sqrt{a^{2}+b^{2}}}-\frac{14 b x^{3} \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}
$$

$$
\begin{aligned}
& \frac{14 b x^{3} \text { polylog }\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} \sqrt{a^{2}+b^{2}}}+\frac{84 b x^{5 / 2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}}-\frac{84 b x^{5 / 2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} \sqrt{a^{2}+b^{2}}} \\
&-\frac{420 b x^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{4} \sqrt{a^{2}+b^{2}}}+\frac{420 b x^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{4} \sqrt{a^{2}+b^{2}}}+\frac{1680 b x^{3 / 2} \operatorname{polylog}\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{5} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

$$
-\frac{1680 b x^{3 / 2} \operatorname{polylog}\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{5} \sqrt{a^{2}+b^{2}}}-\frac{5040 b x \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{6} \sqrt{a^{2}+b^{2}}}+\frac{5040 b x \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{6} \sqrt{a^{2}+b^{2}}}
$$

$$
-\frac{10080 b \text { polylog }\left(8,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{8 \sqrt{a^{2} h^{2}}}+\frac{10080 b \operatorname{polylog}\left(8,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{10080 b \text { polylog}\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}
$$

$$
-\frac{10080 b \text { polylog }\left(7,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a d^{7} \sqrt{a^{2}+b^{2}}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{3}}{a+b \operatorname{csch}(c+d \sqrt{x})} \mathrm{d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{x^{2}}{(a+b \operatorname{csch}(c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 1723 leaves, 49 steps):

$$
-\frac{240 b^{2} \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{6}}-\frac{240 b^{2} \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{6}}+\frac{240 b^{3} \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{6}}
$$

$$
\begin{aligned}
& -\frac{240 b^{3} \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{6}}-\frac{480 b \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{6} \sqrt{a^{2}+b^{2}}}+\frac{480 b \operatorname{polylog}\left(6,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{6} \sqrt{a^{2}+b^{2}}}-\frac{2 b^{2} x^{5} / 2}{a^{2}\left(a^{2}+b^{2}\right) d}+\frac{x^{3}}{3 a^{2}} \\
& +\frac{40 b^{2} x^{3 / 2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}} \\
& \frac{10 b^{3} x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}} \\
& \frac{120 b^{2} x \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{4}} \\
& \frac{40 b^{3} x^{3 / 2} \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& \frac{120 b^{2} x \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{4}} \\
& \frac{40 b^{3} x^{3 / 2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}} \\
& +\frac{120 b^{3} x \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}-\frac{120 b^{3} x \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}-\frac{4 b x^{5 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{a^{2}+b^{2}}} \\
& +\frac{4 b x^{5 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}}-\frac{20 b x^{2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{\sqrt{a^{2}+b^{2}}} \\
& 20 b x^{2} \text { polylog }\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right) \\
& a^{2} d \sqrt{a^{2}+b^{2}} \quad a^{2} d^{2} \sqrt{a^{2}+b^{2}} \quad a^{2} d^{2} \sqrt{a^{2}+b^{2}} \\
& +\frac{80 b x^{3 / 2} \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{a^{2}+b^{2}}}-\frac{80 b x^{3 / 2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{3} \sqrt{a^{2}+b^{2}}}-\frac{240 b x \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{4} \sqrt{a^{2}+b^{2}}} \\
& +\frac{240 b x \operatorname{poly} \log \left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{4} \sqrt{a^{2}+b^{2}}}+\frac{240 b^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}+b^{2}\right) d^{5}}+\frac{240 b^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}+b^{2}\right) d^{5}} \\
& -\frac{240 b^{3} \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{5}}+\frac{240 b^{3} \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d} \sqrt{x}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{5}}+\frac{480 b \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d} \sqrt{x}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{5} \sqrt{a^{2}+b^{2}}} \\
& -\frac{480 b \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{5} \sqrt{a^{2}+b^{2}}}+\frac{10 b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}+\frac{2 b^{3} x^{5} / 2 \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d}
\end{aligned}
$$

$$
+\frac{10 b^{2} x^{2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{2 b^{3} x^{5} / 2 \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d}+\frac{40 b^{2} x^{3 / 2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}}
$$

$$
+\frac{10 b^{3} x^{2} \text { polylog }\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}-\frac{2 b^{2} x^{5 / 2} \cosh (c+d \sqrt{x})}{a\left(a^{2}+b^{2}\right) d(b+a \sinh (c+d \sqrt{x}))}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{2}}{(a+b \operatorname{csch}(c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Problem 18: Unable to integrate problem.

$$
\int x^{3 / 2}(a+b \operatorname{csch}(c+d \sqrt{x}))^{2} \mathrm{~d} x
$$

Optimal(type 4, 310 leaves, 21 steps):
$-\frac{2 b^{2} x^{2}}{d}+\frac{2 a^{2} x^{5 / 2}}{5}-\frac{8 a b x^{2} \operatorname{arctanh}\left(\mathrm{e}^{c+d \sqrt{x}}\right)}{d}-\frac{2 b^{2} x^{2} \operatorname{coth}(c+d \sqrt{x})}{d}+\frac{8 b^{2} x^{3 / 2} \ln \left(1-\mathrm{e}^{2 c+2 d \sqrt{x}}\right)}{d^{2}}-\frac{16 a b x^{3 / 2} \operatorname{polylog}\left(2,-\mathrm{e}^{c+d \sqrt{x}}\right)}{d^{2}}$

$$
\begin{aligned}
& +\frac{16 a b x^{3} / 2 \operatorname{polylog}\left(2, \mathrm{e}^{c+d \sqrt{x}}\right)}{d^{2}}+\frac{12 b^{2} x \operatorname{poly} \log \left(2, \mathrm{e}^{2 c+2 d \sqrt{x}}\right)}{d^{3}}+\frac{48 a b x \operatorname{polylog}\left(3,-\mathrm{e}^{c+d \sqrt{x}}\right)}{d^{3}}-\frac{48 a b x \operatorname{poly} \log \left(3, \mathrm{e}^{c+d \sqrt{x}}\right)}{d^{3}} \\
& +\frac{6 b^{2} \operatorname{polylog}\left(4, \mathrm{e}^{2 c+2 d \sqrt{x}}\right)}{d^{5}}+\frac{96 a b \operatorname{polylog}\left(5,-\mathrm{e}^{c+d \sqrt{x}}\right)}{d^{5}}-\frac{96 a b \operatorname{polylog}\left(5, \mathrm{e}^{c+d \sqrt{x}}\right)}{d^{5}}-\frac{12 b^{2} \operatorname{polylog}\left(3, \mathrm{e}^{2 c+2 d \sqrt{x}}\right) \sqrt{x}}{d^{4}} \\
& -\frac{96 a b \operatorname{poly} \log \left(4,-\mathrm{e}^{c+d \sqrt{x}}\right) \sqrt{x}}{d^{4}}+\frac{96 a b \operatorname{polylog}\left(4, \mathrm{e}^{c+d \sqrt{x}}\right) \sqrt{x}}{d^{4}}
\end{aligned}
$$

Result(type 8, 20 leaves):

$$
\int x^{3 / 2}(a+b \operatorname{csch}(c+d \sqrt{x}))^{2} \mathrm{~d} x
$$

Problem 22: Unable to integrate problem.

$$
\int \frac{x^{3 / 2}}{(a+b \operatorname{csch}(c+d \sqrt{x}))^{2}} \mathrm{~d} x
$$

Optimal(type 4, 1427 leaves, 43 steps):
$\frac{96 b \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{5} \sqrt{a^{2}+b^{2}}}-\frac{96 b \text { polylog }\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{5} \sqrt{a^{2}+b^{2}}}+\frac{48 b^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{5}}+\frac{48 b^{2} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{5}}$ $\left.-\frac{48 b^{3} \operatorname{poly} \log \left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{5}}+\frac{48 b^{3} \operatorname{polylog}\left(5,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{5}}-\frac{2 b^{2} x^{2}}{a^{2}\left(a^{2}+b^{2}\right) d}+\frac{2 x^{5 / 2}}{5 a^{2}}-\frac{4 b x^{2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d \sqrt{a^{2}+b^{2}}}+\frac{4 b x^{2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{\left.+\frac{16 b x^{3 / 2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2} d^{2} \sqrt{a^{2}+b^{2}}}+\frac{16 b x^{3 / 2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right.}{a^{2}}\right)} \begin{array}{l}a^{2} d^{2} \sqrt{a^{2}+b^{2}}\end{array}\right)$

$$
+\frac{48 b x \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{}-\frac{48 b x \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{48 b^{2} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}
$$

$$
-\frac{48 b^{2} \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}+b^{2}\right) d^{4}}+\frac{48 b^{3} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}-\frac{48 b^{3} \operatorname{polylog}\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{4}}
$$

$$
-\frac{96 b \text { polylog }\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{4} \sqrt{a^{2}+b^{2}}}+\frac{96 b \text { polylog }\left(4,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right) \sqrt{x}}{a^{2} d^{4} \sqrt{a^{2}+b^{2}}}+\frac{8 b^{2} x^{3 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}
$$

$$
+\frac{2 b^{3} x^{2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d}+\frac{8 b^{2} x^{3 / 2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{2}}-\frac{2 b^{3} x^{2} \ln \left(1+\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d}+\frac{24 b^{2} x \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}}
$$

$$
+\frac{8 b^{3} x^{3 / 2} \text { polylog }\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}+\frac{24 b^{2} x \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right) d^{3}}-\frac{8 b^{3} x^{3 / 2} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{2}}
$$

$$
-\frac{24 b^{3} x \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}+-
$$

$$
+\frac{24 b^{3} x \text { polylog }\left(3,-\frac{a \mathrm{e}^{c+d \sqrt{x}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d^{3}}
$$

$$
-\frac{2 b^{2} x^{2} \cosh (c+d \sqrt{x})}{a\left(a^{2}+b^{2}\right) d(b+a \sinh (c+d \sqrt{x}))}
$$

[^0]$\int \frac{x^{3 / 2}}{(a+b \operatorname{csch}(c+d \sqrt{x}))^{2}} \mathrm{~d} x$

Problem 24: Unable to integrate problem.

$$
\int \frac{(e x)^{-1+3 n}}{a+b \operatorname{csch}\left(c+d x^{n}\right)} \mathrm{d} x
$$

Optimal(type 4, 404 leaves, 14 steps):

$$
\begin{aligned}
& \frac{(e x)^{3 n}}{3 a e n}-\frac{b(e x)^{3 n} \ln \left(1+\frac{a \mathrm{e}^{c+d x^{n}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d e n x^{n} \sqrt{a^{2}+b^{2}}}+\frac{b(e x)^{3 n} \ln \left(1+\frac{a \mathrm{e}^{c+d x^{n}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d e n x^{n} \sqrt{a^{2}+b^{2}}}-\frac{2 b(e x)^{3 n} \operatorname{polylog}\left(2,-\frac{a \mathrm{e}^{c+d x^{n}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} e n x^{2 n} \sqrt{a^{2}+b^{2}}} \\
& +\frac{2 b(e x)^{3 n} \operatorname{poly} \log \left(2,-\frac{a \mathrm{e}^{c+d x^{n}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{2} e n x^{2 n} \sqrt{a^{2}+b^{2}}}+\frac{2 b(e x)^{3 n} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d x^{n}}}{b-\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} e n x^{3 n} \sqrt{a^{2}+b^{2}}}-\frac{2 b(e x)^{3 n} \operatorname{polylog}\left(3,-\frac{a \mathrm{e}^{c+d x^{n}}}{b+\sqrt{a^{2}+b^{2}}}\right)}{a d^{3} e n x^{3 n} \sqrt{a^{2}+b^{2}}}
\end{aligned}
$$

Result(type 8, 161 leaves):

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \frac{(e x)^{-1+n}}{\left(a+b \operatorname{csch}\left(c+d x^{n}\right)\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 144 leaves, 8 steps):

$$
\frac{(e x)^{n}}{a^{2} e n}+\frac{2 b\left(2 a^{2}+b^{2}\right)(e x)^{n} \operatorname{arctanh}\left(\frac{a-b \tanh \left(\frac{c}{2}+\frac{d x^{n}}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right)}{a^{2}\left(a^{2}+b^{2}\right)^{3 / 2} d e n x^{n}}-\frac{b^{2}(e x)^{n} \operatorname{coth}\left(c+d x^{n}\right)}{a\left(a^{2}+b^{2}\right) d e n x^{n}\left(a+b \operatorname{csch}\left(c+d x^{n}\right)\right)}
$$

Result(type 3, 489 leaves):
$\frac{x \mathrm{e}^{-\frac{(-1+n)\left(\mathrm{I} \operatorname{csgn}(\mathrm{I} e x)^{3} \pi-\mathrm{I} \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} e) \pi-\mathrm{I} \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} x) \pi+\mathrm{I} \operatorname{csgn}(\mathrm{I} e x) \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \pi-2 \ln (x)-2 \ln (e)\right)}{2}}}{a^{2} n}$

$$
\begin{aligned}
& -\frac{2 b^{2} \mathrm{e}^{-\frac{(-1+n)\left(\mathrm{I} \operatorname{csgn}(\mathrm{I} e x)^{3} \pi-\mathrm{I} \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} e) \pi-\mathrm{I} \operatorname{csgn}(\mathrm{I} e x)^{2} \operatorname{csgn}(\mathrm{I} x) \pi+\mathrm{I} \operatorname{csgn}(\mathrm{I} e x) \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \pi-2 \ln (x)-2 \ln (e)\right)}{2}} x\left(-b \mathrm{e}^{c+d x^{n}}+a\right)}{a^{2}\left(a^{2}+b^{2}\right) d n x^{n}\left(a \mathrm{e}^{2} c+2 d x^{n}+2 b \mathrm{e}^{c+d x^{n}} a\right)} \\
& -\frac{1}{a^{2}\left(a^{2}+b^{2}\right) n e d \sqrt{-a^{2} \mathrm{e}^{2 c}-\mathrm{e}^{2 c} b^{2}}}\left(2 b \left(2 a^{2}\right.\right. \\
& \left.+b^{2}\right) \\
& \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{\frac{\mathrm{I}}{2} \pi n \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{\frac{\mathrm{I}}{2} \pi n \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)^{2}} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi n \operatorname{csgn}(\mathrm{I} e x)^{3}} \mathrm{e}^{\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\mathrm{I} e x)} \mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e) \operatorname{csgn}(\mathrm{I} e x)^{2}} \\
& \left.\mathrm{e}^{-\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}(\operatorname{I} e x)^{2}} \mathrm{e}^{\frac{\mathrm{I}}{2} \pi \operatorname{csgn}(\mathrm{I} e x)^{3}} e^{n} \mathrm{e}^{c} \arctan \left(\frac{2 a \mathrm{e}^{2 c+d x^{n}}+2 \mathrm{e}^{c} b}{2 \sqrt{-a^{2} \mathrm{e}^{2 c}-\mathrm{e}^{2 c} b^{2}}}\right)\right)
\end{aligned}
$$

Test results for the 48 problems in "6.6.3 Hyperbolic cosecant functions.txt"
Problem 5: Unable to integrate problem.

$$
\int(b \operatorname{csch}(d x+c))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 105 leaves, 3 steps):

$$
-\frac{2 b \cosh (d x+c) \sqrt{b \operatorname{csch}(d x+c)}}{d}+\frac{2 \mathrm{I} b^{2} \sqrt{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right)^{2}} \operatorname{EllipticE}\left(\cos \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right), \sqrt{2}\right)}{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right) d \sqrt{b \operatorname{csch}(d x+c)} \sqrt{\mathrm{I} \sinh (d x+c)}}
$$

Result(type 8, 12 leaves):

$$
\int(b \operatorname{csch}(d x+c))^{3 / 2} \mathrm{~d} x
$$

Problem 6: Unable to integrate problem.

$$
\int \sqrt{b \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Optimal(type 4, 79 leaves, 2 steps):

$$
\frac{2 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right)^{2}} \text { EllipticF }\left(\cos \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right), \sqrt{2}\right) \sqrt{b \operatorname{csch}(d x+c)} \sqrt{\mathrm{I} \sinh (d x+c)}}{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right) d}
$$

Result(type 8, 12 leaves):
$\int \sqrt{b \operatorname{csch}(d x+c)} \mathrm{d} x$

Problem 7: Result more than twice size of optimal antiderivative.
$\int \frac{1}{\sqrt{b \operatorname{csch}(d x+c)}} d x$

Optimal(type 4, 79 leaves, 2 steps):

$$
\frac{2 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right)^{2}} \text { EllipticE }\left(\cos \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right), \sqrt{2}\right)}{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right) d \sqrt{b \operatorname{csch}(d x+c)} \sqrt{\mathrm{I} \sinh (d x+c)}}
$$

Result(type 4, 226 leaves):
$\frac{\sqrt{2}}{d \sqrt{\frac{b \mathrm{e}^{d x+c}}{\left(\mathrm{e}^{d x+c}\right)^{2}-1}}}-\frac{1}{d \sqrt{\frac{b \mathrm{e}^{d x+c}}{\left(\mathrm{e}^{d x+c}\right)^{2}-1}}\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right)}\left(\frac{2\left(\left(\mathrm{e}^{d x+c}\right)^{2} b-b\right)}{b \sqrt{\mathrm{e}^{d x+c}\left(\left(\mathrm{e}^{d x+c}\right)^{2} b-b\right)}}\right.$

$$
\left.\left.-\frac{\sqrt{\mathrm{e}^{d x+c}+1} \sqrt{-2 \mathrm{e}^{d x+c}+2} \sqrt{-\mathrm{e}^{d x+c}}\left(-2 \operatorname{EllipticE}\left(\sqrt{\mathrm{e}^{d x+c}+1}, \frac{\sqrt{2}}{2}\right)+\operatorname{EllipticF}\left(\sqrt{\mathrm{e}^{d x+c}+1}, \frac{\sqrt{2}}{2}\right)\right)}{\sqrt{b\left(\mathrm{e}^{d x+c}\right)^{3}-b \mathrm{e}^{d x+c}}}\right) \sqrt{2} \sqrt{b \mathrm{e}^{d x+c}\left(\left(\mathrm{e}^{d x+c}\right)^{2}-1\right)}\right)
$$

Problem 8: Unable to integrate problem.

$$
\int \frac{1}{(b \operatorname{csch}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 107 leaves, 3 steps):

$$
\frac{2 \cosh (d x+c)}{3 b d \sqrt{b \operatorname{csch}(d x+c)}}-\frac{2 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cos \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right), \sqrt{2}\right) \sqrt{b \operatorname{csch}(d x+c)} \sqrt{\mathrm{I} \sinh (d x+c)}}{3 \sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right) b^{2} d}
$$

Result(type 8, 12 leaves):

$$
\int \frac{1}{(b \operatorname{csch}(d x+c))^{3 / 2}} \mathrm{~d} x
$$

[^1]$$
\int \frac{1}{(b \operatorname{csch}(d x+c))^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 107 leaves, 3 steps):

$$
\frac{2 \cosh (d x+c)}{5 b d(b \operatorname{csch}(d x+c))^{3 / 2}}-\frac{6 \mathrm{I} \sqrt{\sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right)^{2}} \mathrm{EllipticE}\left(\cos \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right), \sqrt{2}\right)}{5 \sin \left(\frac{\mathrm{I} c}{2}+\frac{\pi}{4}+\frac{\mathrm{I} d x}{2}\right) b^{2} d \sqrt{b \operatorname{csch}(d x+c)} \sqrt{\mathrm{I} \sinh (d x+c)}}
$$

Result(type 8, 12 leaves):

$$
\int \frac{1}{(b \operatorname{csch}(d x+c))^{5 / 2}} \mathrm{~d} x
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int\left(-\operatorname{csch}(x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 18 leaves, 3 steps):

$$
\frac{\arcsin (\operatorname{coth}(x))}{2}+\frac{\operatorname{coth}(x) \sqrt{-\operatorname{csch}(x)^{2}}}{2}
$$

Result(type 3, 98 leaves):

$$
\frac{\sqrt{-\frac{\mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}\left(\mathrm{e}^{2 x}+1\right)}{\mathrm{e}^{2 x}-1}-\frac{\mathrm{e}^{-x}\left(\mathrm{e}^{2 x}-1\right) \sqrt{-\frac{\mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} \ln \left(1+\mathrm{e}^{x}\right)}{2}+\frac{\mathrm{e}^{-x}\left(\mathrm{e}^{2 x}-1\right) \sqrt{-\frac{\mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} \ln \left(\mathrm{e}^{x}-1\right)}{2}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int\left(a \operatorname{csch}(x)^{2}\right)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 5 steps):

$$
-\frac{3 a^{5 / 2} \operatorname{arctanh}\left(\frac{\operatorname{coth}(x) \sqrt{a}}{\sqrt{a \operatorname{csch}(x)^{2}}}\right)}{8}-\frac{a \operatorname{coth}(x)\left(a \operatorname{csch}(x)^{2}\right)^{3 / 2}}{4}+\frac{3 a^{2} \operatorname{coth}(x) \sqrt{a \operatorname{csch}(x)^{2}}}{8}
$$

Result(type 3, 122 leaves):

$$
\frac{a^{2} \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}\left(3 \mathrm{e}^{6 x}-11 \mathrm{e}^{4 x}-11 \mathrm{e}^{2 x}+3\right)}{4\left(\mathrm{e}^{2 x}-1\right)^{3}}-\frac{3 a^{2} \mathrm{e}^{-x}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} \ln \left(1+\mathrm{e}^{x}\right)}{8}+\frac{3 a^{2} \mathrm{e}^{-x}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}} \ln \left(\mathrm{e}^{x}-1\right)}}{8}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a \operatorname{csch}(x)^{2}\right)^{7 / 2}} d x
$$

Optimal (type 3, 58 leaves, 5 steps):

$$
\frac{\operatorname{coth}(x)}{7\left(a \operatorname{csch}(x)^{2}\right)^{7 / 2}}-\frac{6 \operatorname{coth}(x)}{35 a\left(a \operatorname{csch}(x)^{2}\right)^{5 / 2}}+\frac{8 \operatorname{coth}(x)}{35 a^{2}\left(a \operatorname{csch}(x)^{2}\right)^{3 / 2}}-\frac{16 \operatorname{coth}(x)}{35 a^{3} \sqrt{a \operatorname{csch}(x)^{2}}}
$$

Result (type 3, 261 leaves):

$$
\begin{aligned}
\frac{\mathrm{e}^{8 x}}{896 a^{3}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}}-\frac{7 \mathrm{e}^{6 x}}{640 a^{3}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}}+\frac{7 \mathrm{e}^{4 x}}{128 a^{3}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}}-\frac{35 \mathrm{e}^{2 x}}{128 a^{3}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}} \\
-\frac{35}{128 a^{3}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{-2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}}+\frac{7 \mathrm{e}^{-4 x}}{128 a^{3}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}}-\frac{640 a^{3}\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}}{896 a^{3}\left(\mathrm{e}^{2 x}-1\right)} \sqrt{\frac{a \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}
\end{aligned}
$$

Problem 13: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{a \operatorname{csch}(x)^{3}}} \mathrm{~d} x
$$

Optimal(type 4, 72 leaves, 4 steps):

$$
\frac{2 \operatorname{coth}(x)}{3 \sqrt{a \operatorname{csch}(x)^{3}}}-\frac{2 \mathrm{I} \operatorname{csch}(x)^{2} \sqrt{\sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)^{2}} \mathrm{EllipticF}\left(\cos \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right), \sqrt{2}\right) \sqrt{\mathrm{I} \sinh (x)}}{3 \sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right) \sqrt{a \operatorname{csch}(x)^{3}}}
$$

Result (type 8, 10 leaves):

$$
\int \frac{1}{\sqrt{a \operatorname{csch}(x)^{3}}} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{1}{\left(a \operatorname{csch}(x)^{3}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 133 leaves, 7 steps):
$-\frac{26 \operatorname{coth}(x)}{77 a^{2} \sqrt{a \operatorname{csch}(x)^{3}}}+\frac{78 \cosh (x) \sinh (x)}{385 a^{2} \sqrt{a \operatorname{csch}(x)^{3}}}-\frac{26 \cosh (x) \sinh (x)^{3}}{165 a^{2} \sqrt{a \operatorname{csch}(x)^{3}}}+\frac{2 \cosh (x) \sinh (x)^{5}}{15 a^{2} \sqrt{a \operatorname{csch}(x)^{3}}}$

$$
+\frac{26 \mathrm{I} \operatorname{csch}(x)^{2} \sqrt{\sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right)^{2}} \text { EllipticF }\left(\cos \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right), \sqrt{2}\right) \sqrt{\mathrm{I} \sinh (x)}}{77 \sin \left(\frac{\pi}{4}+\frac{\mathrm{I} x}{2}\right) a^{2} \sqrt{a \operatorname{csch}(x)^{3}}}
$$

Result(type 8, 10 leaves):

$$
\int \frac{1}{\left(a \operatorname{csch}(x)^{3}\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a \operatorname{csch}(x)^{4}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 70 leaves, 5 steps):

$$
\frac{5 \operatorname{coth}(x)}{16 a \sqrt{a \operatorname{csch}(x)^{4}}}-\frac{5 x \operatorname{csch}(x)^{2}}{16 a \sqrt{a \operatorname{csch}(x)^{4}}}-\frac{5 \cosh (x) \sinh (x)}{24 a \sqrt{a \operatorname{csch}(x)^{4}}}+\frac{\cosh (x) \sinh (x)^{3}}{6 a \sqrt{a \operatorname{csch}(x)^{4}}}
$$

Result(type 3, 229 leaves):

$$
\begin{gathered}
-\frac{5 \mathrm{e}^{2 x} x}{16 a\left(\mathrm{e}^{2 x}-1\right)^{2} \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}-1\right)^{4}}}}+\frac{\mathrm{e}^{8 x}}{384 a\left(\mathrm{e}^{2 x}-1\right)^{2} \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}-1\right)^{4}}}}-\frac{3 \mathrm{e}^{6 x}}{128 a\left(\mathrm{e}^{2 x}-1\right)^{2} \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}-1\right)^{4}}}}+\frac{15 \mathrm{e}^{4 x}}{128 a\left(\mathrm{e}^{2 x}-1\right)^{2} \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}-1\right)^{4}}}} \\
-\frac{15}{128 a\left(\mathrm{e}^{2 x}-1\right)^{2} \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}-1\right)^{4}}}}+\frac{\mathrm{e}^{-4 x}}{128 a\left(\mathrm{e}^{2 x}-1\right)^{2} \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}-1\right)^{4}}}}-\frac{384 a\left(\mathrm{e}^{2 x}-1\right)^{2 \sqrt{\frac{a \mathrm{e}^{4 x}}{\left(\mathrm{e}^{2 x}-1\right)^{4}}}}}{}
\end{gathered}
$$

$$
\int \sqrt{a-\mathrm{I} a \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Optimal(type 3, 33 leaves, 2 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{\operatorname{coth}(d x+c) \sqrt{a}}{\sqrt{a-\mathrm{I} a \operatorname{csch}(d x+c)}}\right) \sqrt{a}}{d}
$$

Result(type 8, 16 leaves):

$$
\int \sqrt{a-\mathrm{I} a \operatorname{csch}(d x+c)} \mathrm{d} x
$$

Problem 19: Unable to integrate problem.

$$
\int \sqrt{3-3 I \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 18 leaves, 2 steps):

$$
2 \operatorname{arctanh}\left(\frac{\operatorname{coth}(x)}{\sqrt{1-\operatorname{Icsch}(x)}}\right) \sqrt{3}
$$

Result(type 8, 11 leaves):

$$
\int \sqrt{3-3 I \operatorname{csch}(x)} \mathrm{d} x
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{2}}{\mathrm{I}+\operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 29 leaves, 5 steps):

$$
\frac{3 \mathrm{I} x}{2}+2 \cosh (x)-\frac{3 \mathrm{I} \cosh (x) \sinh (x)}{2}-\frac{\cosh (x) \sinh (x)}{\mathrm{I}+\operatorname{csch}(x)}
$$

Result(type 3, 95 leaves):

$$
\begin{aligned}
& -\frac{3 \mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2}-\frac{\mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{1}{\tanh \left(\frac{x}{2}\right)-1}-\frac{\mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{2 \mathrm{I}}{\tanh \left(\frac{x}{2}\right)-\mathrm{I}}+\frac{\mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}} \\
& +\frac{3 \mathrm{I} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2}+\frac{1}{\tanh \left(\frac{x}{2}\right)+1}-\frac{\mathrm{I}}{2\left(\tanh \left(\frac{x}{2}\right)+1\right)}
\end{aligned}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)}{\mathrm{I}+\operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 18 leaves, 4 steps):

$$
x-2 \mathrm{I} \cosh (x)-\frac{\cosh (x)}{\mathrm{I}+\operatorname{csch}(x)}
$$

Result(type 3, 50 leaves):

$$
\frac{\mathrm{I}}{\tanh \left(\frac{x}{2}\right)-1}-\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)-\frac{2}{\tanh \left(\frac{x}{2}\right)-\mathrm{I}}-\frac{\mathrm{I}}{\tanh \left(\frac{x}{2}\right)+1}+\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)
$$

$$
\int \frac{\operatorname{sech}(x)^{4}}{I+\operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 21 leaves, 7 steps):

$$
-\frac{\operatorname{sech}(x)^{5}}{5}-\frac{\mathrm{I} \tanh (x)^{3}}{3}+\frac{\mathrm{I} \tanh (x)^{5}}{5}
$$

Result(type 3, 92 leaves):

$$
\begin{aligned}
& -\frac{4 \mathrm{I}}{3\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)^{3}}+\frac{3 \mathrm{I}}{8\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)}+\frac{2 \mathrm{I}}{5\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)^{5}}+\frac{1}{\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)^{4}}-\frac{1}{\left(\tanh \left(\frac{x}{2}\right)-\mathrm{I}\right)^{2}}+\frac{\mathrm{I}}{6\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{3}} \\
& \\
& \quad-\frac{3 \mathrm{I}}{8\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)}-\frac{1}{4\left(\tanh \left(\frac{x}{2}\right)+\mathrm{I}\right)^{2}}
\end{aligned}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{5}}{a+b \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 94 leaves, 5 steps):

$$
-\frac{b\left(a^{2}+b^{2}\right)^{2} \ln (b+a \sinh (x))}{a^{6}}+\frac{\left(a^{2}+b^{2}\right)^{2} \sinh (x)}{a^{5}}-\frac{b\left(2 a^{2}+b^{2}\right) \sinh (x)^{2}}{2 a^{4}}+\frac{\left(2 a^{2}+b^{2}\right) \sinh (x)^{3}}{3 a^{3}}-\frac{b \sinh (x)^{4}}{4 a^{2}}+\frac{\sinh (x)^{5}}{5 a}
$$

Result(type 3, 599 leaves):

$$
\begin{aligned}
& \frac{b \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a^{2}}+\frac{2 b^{3} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a^{4}}+\frac{b^{5} \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a^{6}}-\frac{b \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{a^{2}} \\
& -\frac{2 b^{3} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{a^{4}}-\frac{b^{5} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{a^{6}}-\frac{b}{4 a^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}+\frac{b}{2 a^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}} \\
& -\frac{b^{2}}{3 a^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{9 b}{8 a^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{b^{2}}{2 a^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{b^{3}}{2 a^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{7 b}{8 a^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)} \\
& -\frac{2 b^{2}}{a^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{b^{3}}{2 a^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{b^{4}}{a^{5}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{b \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a^{2}}+\frac{2 b^{3} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a^{4}} \\
& +\frac{b^{5} \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a^{6}}-\frac{7 b}{8 a^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{2 b^{2}}{a^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{b^{3}}{2 a^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{b^{4}}{a^{5}\left(\tanh \left(\frac{x}{2}\right)-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{9 b}{8 a^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{b^{2}}{2 a^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{b^{3}}{2 a^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{b}{2 a^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{b^{2}}{3 a^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}} \\
& -\frac{1}{4 a^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}+\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}+\frac{1}{8 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{1}{a\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{1}{12 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}} \\
& -\frac{11}{12 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{1}{5 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{5}}-\frac{1}{5 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}}-\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}-\frac{1}{8 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}} \\
& -\frac{1}{a\left(\tanh \left(\frac{x}{2}\right)-1\right)}
\end{aligned}
$$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{5}}{a+b \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 135 leaves, 7 steps):

$$
-\frac{a(3 \mathrm{I} a+b) \ln (\mathrm{I}-\sinh (x))}{16(a-\mathrm{I} b)^{3}}+\frac{a(3 a+\mathrm{I} b) \ln (\mathrm{I}+\sinh (x))}{16(\mathrm{I} a-b)^{3}}-\frac{a^{4} b \ln (b+a \sinh (x))}{\left(a^{2}+b^{2}\right)^{3}}-\frac{\operatorname{sech}(x)^{4}(b-a \sinh (x))}{4\left(a^{2}+b^{2}\right)}
$$

$$
-\frac{\operatorname{sech}(x)^{2}\left(4 a^{2} b-a\left(3 a^{2}-b^{2}\right) \sinh (x)\right)}{8\left(a^{2}+b^{2}\right)^{2}}
$$

Result(type 3, 1167 leaves):

$$
\begin{gathered}
-\frac{a^{4} b \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)}-\frac{5 \tanh \left(\frac{x}{2}\right)^{7} a^{5}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{2 \tanh \left(\frac{x}{2}\right)^{6} b^{5}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
+\frac{3 \tanh \left(\frac{x}{2}\right)^{5} a^{5}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{3 \tanh \left(\frac{x}{2}\right)^{3} a^{5}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
+\frac{2 \tanh \left(\frac{x}{2}\right)^{2} b^{5}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{5 \tanh \left(\frac{x}{2}\right) a^{5}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{a^{4} b \ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)} \\
-\frac{3 \arctan \left(\tanh \left(\frac{x}{2}\right)\right) a^{3} b^{2}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)}-\frac{\arctan \left(\tanh \left(\frac{x}{2}\right)\right) a b^{4}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)}+\frac{x}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& +\frac{4 \tanh \left(\frac{x}{2}\right)^{2} a^{4} b}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{6 \tanh \left(\frac{x}{2}\right)^{2} a^{2} b^{3}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{3 \tanh \left(\frac{x}{2}\right) a^{3} b^{2}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{\tanh \left(\frac{x}{2}\right) a b^{4}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& -\frac{3 \tanh \left(\frac{x}{2}\right)^{7} a^{3} b^{2}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{\tanh \left(\frac{x}{2}\right)^{7} a b^{4}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{4 \tanh \left(\frac{x}{2}\right)^{6} a^{4} b}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{6 \tanh \left(\frac{x}{2}\right)^{6} a^{2} b^{3}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{5 \tanh \left(\frac{x}{2}\right)^{5} a^{3} b^{2}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{7 \tanh \left(\frac{x}{2}\right)^{5} a b^{4}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{4 \tanh \left(\frac{x}{2}\right)^{4} a^{4} b}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{4 \tanh \left(\frac{x}{2}\right)^{4} a^{2} b^{3}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& -\frac{5 \tanh \left(\frac{x}{2}\right)^{3} a^{3} b^{2}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{7 \tanh \left(\frac{x}{2}\right)^{3} a b^{4}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}
\end{aligned}
$$

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{\tanh (x)^{5}}{a+b \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 184 leaves, 11 steps):
$-\frac{b^{5} \arctan (\sinh (x))}{\left(a^{2}+b^{2}\right)^{3}}-\frac{b^{3} \arctan (\sinh (x))}{2\left(a^{2}+b^{2}\right)^{2}}-\frac{3 b \arctan (\sinh (x))}{8\left(a^{2}+b^{2}\right)}+\frac{b^{6} \ln (a+b \operatorname{csch}(x))}{a\left(a^{2}+b^{2}\right)^{3}}+\frac{\ln (\sinh (x))}{a}-\frac{a\left(a^{4}+3 a^{2} b^{2}+3 b^{4}\right) \ln (\tanh (x))}{\left(a^{2}+b^{2}\right)^{3}}$

$$
+\frac{3 b \operatorname{sech}(x) \tanh (x)}{8\left(a^{2}+b^{2}\right)}-\frac{\left(a\left(a^{2}+2 b^{2}\right)-b^{3} \operatorname{csch}(x)\right) \tanh (x)^{2}}{2\left(a^{2}+b^{2}\right)^{2}}-\frac{(a-b \operatorname{csch}(x)) \tanh (x)^{4}}{4\left(a^{2}+b^{2}\right)}
$$

Result(type 3, 1322 leaves):

$$
\begin{aligned}
& \frac{b^{6} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right) a}-\frac{3 \arctan \left(\tanh \left(\frac{x}{2}\right)\right) a^{4} b}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)}-\frac{5 \arctan \left(\tanh \left(\frac{x}{2}\right)\right) a^{2} b^{3}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)} \\
& -\frac{7 \tanh \left(\frac{x}{2}\right)^{7} b^{5}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{2 \tanh \left(\frac{x}{2}\right)^{6} a^{5}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& - \\
& +\frac{15 \tanh \left(\frac{x}{2}\right)^{5} b^{5}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{8 \tanh \left(\frac{x}{2}\right)^{4} a^{5}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& \\
& +4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4} \\
& +\frac{7 \tanh \left(\frac{x}{2}\right) b^{5}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{2} a^{5}} \\
& \\
&
\end{aligned}
$$

$$
-\frac{3 \tanh \left(\frac{x}{2}\right)^{7} a^{4} b}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{5 \tanh \left(\frac{x}{2}\right)^{7} a^{2} b^{3}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}
$$

$$
-\frac{6 \tanh \left(\frac{x}{2}\right)^{6} a^{3} b^{2}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{4 \tanh \left(\frac{x}{2}\right)^{6} a b^{4}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}
$$

$$
13 \tanh \left(\frac{x}{2}\right)^{5} a^{2} b^{3}-11 \tanh \left(\frac{x}{2}\right)^{5} a^{4} b
$$

$$
2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4} 4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}
$$

$$
\begin{aligned}
& -\frac{20 \tanh \left(\frac{x}{2}\right)^{4} a^{3} b^{2}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{12 \tanh \left(\frac{x}{2}\right)^{4} a b^{4}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{13 \tanh \left(\frac{x}{2}\right)^{3} a^{2} b^{3}}{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{11 \tanh \left(\frac{x}{2}\right)^{3} a^{4} b}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& -\frac{6 \tanh \left(\frac{x}{2}\right)^{2} a^{3} b^{2}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}-\frac{4 \tanh \left(\frac{x}{2}\right)^{2} a b^{4}}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}} \\
& +\frac{3 \tanh \left(\frac{x}{2}\right) a^{4} b}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}+\frac{2\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{4}}{4}+\frac{x}{\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right) a^{5}}{4\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)\left(a^{2}+b^{2}\right)}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}
\end{aligned}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{2}}{a+b \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 51 leaves, 8 steps):

$$
\frac{x}{a}-\frac{\operatorname{arctanh}(\cosh (x))}{b}+\frac{2 \operatorname{arctanh}\left(\frac{a-b \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{2}+b^{2}}}\right) \sqrt{a^{2}+b^{2}}}{a b}
$$

Result(type 3, 109 leaves):

$$
-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a}-\frac{2 a \operatorname{arctanh}\left(\frac{2 b \tanh \left(\frac{x}{2}\right)-2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{b \sqrt{a^{2}+b^{2}}}-\frac{2 b \operatorname{arctanh}\left(\frac{2 b \tanh \left(\frac{x}{2}\right)-2 a}{2 \sqrt{a^{2}+b^{2}}}\right)}{a \sqrt{a^{2}+b^{2}}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)\right)}{b}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{3}}{a+b \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 32 leaves, 3 steps):

$$
-\frac{\operatorname{csch}(x)}{b}+\left(\frac{1}{a}+\frac{a}{b^{2}}\right) \ln (a+b \operatorname{csch}(x))+\frac{\ln (\sinh (x))}{a}
$$

Result(type 3, 105 leaves):
$\frac{\tanh \left(\frac{x}{2}\right)}{2 b}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a}+\frac{a \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{b^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{a}-\frac{1}{2 b \tanh \left(\frac{x}{2}\right)}$
$-\frac{a \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{b^{2}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}$

Problem 36: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{5}}{a+b \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 66 leaves, 3 steps):

$$
-\frac{\left(a^{2}+2 b^{2}\right) \operatorname{csch}(x)}{b^{3}}+\frac{a \operatorname{csch}(x)^{2}}{2 b^{2}}-\frac{\operatorname{csch}(x)^{3}}{3 b}+\frac{\left(a^{2}+b^{2}\right)^{2} \ln (a+b \operatorname{csch}(x))}{a b^{4}}+\frac{\ln (\sinh (x))}{a}
$$

Result(type 3, 218 leaves):

$$
\begin{aligned}
& \frac{\tanh \left(\frac{x}{2}\right)^{3}}{24 b}+\frac{\tanh \left(\frac{x}{2}\right)^{2} a}{8 b^{2}}+\frac{a^{2} \tanh \left(\frac{x}{2}\right)}{2 b^{3}}+\frac{7 \tanh \left(\frac{x}{2}\right)}{8 b}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{a}+\frac{a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{b^{4}} \\
& \quad+\frac{2 a \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{b^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{a}-\frac{1}{24 b \tanh \left(\frac{x}{2}\right)^{3}}-\frac{1}{2 b^{3} \tanh \left(\frac{x}{2}\right)}-\frac{a^{2}}{8 b \tanh \left(\frac{x}{2}\right)} \\
& \quad+\frac{a}{8 b^{2} \tanh \left(\frac{x}{2}\right)^{2}}-\frac{a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{b^{4}}-\frac{2 a \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{b^{2}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}
\end{aligned}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{coth}(x)^{7}}{a+b \operatorname{csch}(x)} \mathrm{d} x
$$

Optimal(type 3, 111 leaves, 3 steps):
$-\frac{\left(a^{4}+3 a^{2} b^{2}+3 b^{4}\right) \operatorname{csch}(x)}{b^{5}}+\frac{a\left(a^{2}+3 b^{2}\right) \operatorname{csch}(x)^{2}}{2 b^{4}}-\frac{\left(a^{2}+3 b^{2}\right) \operatorname{csch}(x)^{3}}{3 b^{3}}+\frac{a \operatorname{csch}(x)^{4}}{4 b^{2}}-\frac{\operatorname{csch}(x)^{5}}{5 b}+\frac{\left(a^{2}+b^{2}\right)^{3} \ln (a+b \operatorname{csch}(x))}{a b^{6}}$

$$
+\frac{\ln (\sinh (x))}{a}
$$

Result(type 3, 387 leaves):

$$
\begin{aligned}
& \frac{a^{5} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{b^{6}}-\frac{a^{2}}{24 b^{3} \tanh \left(\frac{x}{2}\right)^{3}}-\frac{a^{4}}{2 b^{5} \tanh \left(\frac{x}{2}\right)}+\frac{a^{3}}{8 b^{4} \tanh \left(\frac{x}{2}\right)^{2}}-\frac{a^{5} \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{b^{6}}+\frac{a}{64 b^{2} \tanh \left(\frac{x}{2}\right)^{4}} \\
& +\frac{\tanh \left(\frac{x}{2}\right)^{4} a}{64 b^{2}}+\frac{a^{2} \tanh \left(\frac{x}{2}\right)^{3}}{24 b^{3}}+\frac{\tanh \left(\frac{x}{2}\right)^{2} a^{3}}{8 b^{4}}+\frac{a^{4} \tanh \left(\frac{x}{2}\right)}{2 b^{5}}-\frac{1}{160 b \tanh \left(\frac{x}{2}\right)^{5}}+\frac{\tanh \left(\frac{x}{2}\right)^{5}}{160 b}+\frac{5 \tanh \left(\frac{x}{2}\right)^{2} a}{16 b^{2}}+\frac{11 a^{2} \tanh \left(\frac{x}{2}\right)}{8 b^{3}} \\
& \quad+\frac{3 a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{b^{4}}-\frac{11 a^{2}}{8 b^{3} \tanh \left(\frac{x}{2}\right)}+\frac{16 b^{2} \tanh \left(\frac{x}{2}\right)^{2}}{16}-\frac{3 a^{3} \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{b^{4}} \\
& \quad+\frac{3 a \ln \left(\tanh \left(\frac{x}{2}\right)^{2} b-2 a \tanh \left(\frac{x}{2}\right)-b\right)}{b^{2}}-\frac{3 a \ln \left(\tanh \left(\frac{x}{2}\right)\right)}{b^{2}}+\frac{19 \tanh \left(\frac{x}{2}\right)}{16 b}-\frac{19}{16 b \tanh \left(\frac{x}{2}\right)}+\frac{3 \tanh \left(\frac{x}{2}\right)^{3}}{32 b}-\frac{19}{32}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{3}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{a}
\end{aligned}
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{\operatorname{csch}(2 \ln (c x))^{3 / 2}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 59 leaves, 6 steps):

$$
-\frac{\left(c^{4}-\frac{1}{x^{4}}\right) x \operatorname{csch}(2 \ln (c x))^{3 / 2}}{2}+\frac{c^{6}\left(1-\frac{1}{c^{4} x^{4}}\right)^{3 / 2} x^{3} \operatorname{arccsc}\left(c^{2} x^{2}\right) \operatorname{csch}(2 \ln (c x))^{3 / 2}}{2}
$$

Result(type 8, 15 leaves):

$$
\int \frac{\operatorname{csch}(2 \ln (c x))^{3 / 2}}{x^{4}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \operatorname{csch}\left(a+b \ln \left(c x^{n}\right)\right) \mathrm{d} x
$$

Optimal(type 5, 57 leaves, 4 steps):

$$
-\frac{2 \mathrm{e}^{a} x\left(c x^{n}\right)^{b} \text { hypergeom }\left(\left[1, \frac{b+\frac{1}{n}}{2 b}\right],\left[\frac{3}{2}+\frac{1}{2 b n}\right], \mathrm{e}^{2 a}\left(c x^{n}\right)^{2 b}\right)}{b n+1}
$$

Result(type 8, 13 leaves):

$$
\int \operatorname{csch}\left(a+b \ln \left(c x^{n}\right)\right) \mathrm{d} x
$$

Test results for the 10 problems in "6.6.7 (d hyper)^m (a+b (c csch)^n)^p.txt"
Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a+b \operatorname{csch}(d x+c)^{2}\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 142 leaves, 6 steps):
$\frac{x}{a^{3}}+\frac{b \operatorname{coth}(d x+c)}{4 a(-b+a) d\left(a-b+b \operatorname{coth}(d x+c)^{2}\right)^{2}}+\frac{(7 a-4 b) b \operatorname{coth}(d x+c)}{8 a^{2}(-b+a)^{2} d\left(a-b+b \operatorname{coth}(d x+c)^{2}\right)}$
$-\frac{\left(15 a^{2}-20 a b+8 b^{2}\right) \arctan \left(\frac{\sqrt{-b+a} \tanh (d x+c)}{\sqrt{b}}\right) \sqrt{b}}{8 a^{3}(-b+a)^{5 / 2} d}$
Result(type ?, 4583 leaves): Display of huge result suppressed!
Problem 4: Unable to integrate problem.

$$
\int\left(a+b \operatorname{csch}(d x+c)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 108 leaves, 7 steps):

$$
\frac{a^{3 / 2} \operatorname{arctanh}\left(\frac{\operatorname{coth}(d x+c) \sqrt{a}}{\sqrt{a-b+b \operatorname{coth}(d x+c)^{2}}}\right)}{d}-\frac{(3 a-b) \operatorname{arctanh}\left(\frac{\operatorname{coth}(d x+c) \sqrt{b}}{\sqrt{a-b+b \operatorname{coth}(d x+c)^{2}}}\right) \sqrt{b}}{2 d}-\frac{b \operatorname{coth}(d x+c) \sqrt{a-b+b \operatorname{coth}(d x+c)^{2}}}{2 d}
$$

Result(type 8, 16 leaves):

$$
\int\left(a+b \operatorname{csch}(d x+c)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Problem 5: Unable to integrate problem.

$$
\int \frac{1}{\left(a+b \operatorname{csch}(d x+c)^{2}\right)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 175 leaves, 7 steps):
$\frac{\operatorname{arctanh}\left(\frac{\operatorname{coth}(d x+c) \sqrt{a}}{\sqrt{a-b+b \operatorname{coth}(d x+c)^{2}}}\right)}{a^{7 / 2} d}+\frac{b \operatorname{coth}(d x+c)}{5 a(-b+a) d\left(a-b+b \operatorname{coth}(d x+c)^{2}\right)^{5 / 2}}+\frac{(9 a-5 b) b \operatorname{coth}(d x+c)}{15 a^{2}(-b+a)^{2} d\left(a-b+b \operatorname{coth}(d x+c)^{2}\right)^{3 / 2}}$ $+\frac{b\left(33 a^{2}-40 a b+15 b^{2}\right) \operatorname{coth}(d x+c)}{15 a^{3}(-b+a)^{3} d \sqrt{a-b+b \operatorname{coth}(d x+c)^{2}}}$
Result(type 8, 16 leaves):

$$
\int \frac{1}{\left(a+b \operatorname{csch}(d x+c)^{2}\right)^{7 / 2}} \mathrm{~d} x
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int\left(1+\operatorname{csch}(x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 23 leaves, 4 steps):

$$
-\frac{\left(\operatorname{coth}(x)^{2}\right)^{3 / 2} \tanh (x)}{2}+\ln (\sinh (x)) \sqrt{\operatorname{coth}(x)^{2}} \tanh (x)
$$

Result(type 3, 119 leaves):

$$
-\frac{\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} x}{\mathrm{e}^{2 x}+1}-\frac{2 \sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+1\right)\left(\mathrm{e}^{2 x}-1\right)}+\frac{\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} \ln \left(\mathrm{e}^{2 x}-1\right)}{\mathrm{e}^{2 x}+1}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{1+\operatorname{csch}(x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 12 leaves, 3 steps):

$$
\ln (\sinh (x)) \sqrt{\operatorname{coth}(x)^{2}} \tanh (x)
$$

Result(type 3, 78 leaves):

$$
-\frac{\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} x}{\mathrm{e}^{2 x}+1}+\frac{\left(\mathrm{e}^{2 x}-1\right) \sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}} \ln \left(\mathrm{e}^{2 x}-1\right)}{\mathrm{e}^{2 x}+1}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{1+\operatorname{csch}(x)^{2}}} \mathrm{~d} x
$$

Optimal(type 3, 12 leaves, 3 steps):

$$
\underline{\operatorname{coth}(x) \ln (\cosh (x))}
$$

$$
\sqrt{\operatorname{coth}(x)^{2}}
$$

Result(type 3, 78 leaves):

$$
-\frac{\left(\mathrm{e}^{2 x}+1\right) x}{\sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}\left(\mathrm{e}^{2 x}-1\right)}+\frac{\left(\mathrm{e}^{2 x}+1\right) \ln \left(\mathrm{e}^{2 x}+1\right)}{\sqrt{\frac{\left(\mathrm{e}^{2 x}+1\right)^{2}}{\left(\mathrm{e}^{2 x}-1\right)^{2}}}\left(\mathrm{e}^{2 x}-1\right)}
$$

Problem 9: Unable to integrate problem.

$$
\int\left(1-\operatorname{csch}(x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 39 leaves, 6 steps):

$$
2 \arcsin \left(\frac{\operatorname{coth}(x) \sqrt{2}}{2}\right)+\operatorname{arctanh}\left(\frac{\operatorname{coth}(x)}{\sqrt{2-\operatorname{coth}(x)^{2}}}\right)+\frac{\operatorname{coth}(x) \sqrt{2-\operatorname{coth}(x)^{2}}}{2}
$$

Result(type 8, 12 leaves):

$$
\int\left(1-\operatorname{csch}(x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Problem 10: Unable to integrate problem.

$$
\int \sqrt{-1+\operatorname{csch}(x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 29 leaves, 6 steps):

$$
-\arctan \left(\frac{\operatorname{coth}(x)}{\sqrt{-2+\operatorname{coth}(x)^{2}}}\right)-\operatorname{arctanh}\left(\frac{\operatorname{coth}(x)}{\sqrt{-2+\operatorname{coth}(x)^{2}}}\right)
$$

Result(type 8, 10 leaves):

$$
\int \sqrt{-1+\operatorname{csch}(x)^{2}} \mathrm{~d} x
$$

Summary of Integration Test Results
94 integration problems

A - 40 optimal antiderivatives
B - 24 more than twice size of optimal antiderivatives
C - O unnecessarily complex antiderivatives
D - 30 unable to integrate problems
E - O integration timeouts

[^0]: Result(type 8, 20 leaves):

[^1]: Problem 9: Unable to integrate problem.

